2019-101

PoG

2019-21 Batch 6th BOS- 27.4.20

BHAVAN'S VIVEKANANDA COLLEGE OF SCIENCE, HUMANITIES AND COMMERCE, SAINIKPURI, SECUNDERABAD.

Autonomous College
Affiliated to OSMANIA UNIVERSITY, Hyderabad.
(Accredited with 'A' grade by NAAC)
Department of Microbiology M.Sc Microbiology CBCS Syllabus

Effective from 2019 onwards

Semest	eri
Credits	Teaching

Syllabus Ref No	Subject	Credits	Teaching Hours		Marks	
				Internal Assessment	Semester Exam	Total
	THEORY					
PMB 101	General Microbiology& Microbial Physiology(Core)	4	4	30	70	100
PMB, 102	Virology (Core)	4	4	30	70	100
PMB 103	Research Methodology & Techniques(Core)	4	4	30	70	100
PMB 104	Microbial Biochemistry(Core)	4	4	30	70	100
	PRACTICALS					
PMB 151	General Microbiology & Virology	4	8		100	100
PMB 1524	Research Methodology & Techniques Microbial Biochemistry	4	8		100	100
	200000000000000000000000000000000000000	24	32	*120	480	600

Semester II

Syllabus Ref No	Subject	Credits	Teaching Hours	Marks			
				Internal Assessment	Semester Exam	Total	
	THEORY					,	
PMB 201	Molecularbiology & Microbial Genetics (Core)	4	4	30	70	100	
PMB 202	Environmental & Agricultural Microbiology (Core)	4	4	30	70	100	
PMB 203	Immunology(Core)	4	4	30	70	100	
PMB 204	Pharmaceutical Microbiology (Core)	4	4	30	70	100	
	PRACTICALS		et is angestaller, hanger				
PMB 251	Molecularbiology, Microbial Genetics& Environmental & Agricultural Microbiology	4	8		100	100	
PMB 252	Immunology& Pharmaceutical Microbiology	4	8		100	100	
	Total	24	32	120	480	600	

Pology viv anda College Same our Bhavan's Viv

Dr.B.Bhima Chairman, BoS

Semester III

Syllabus Ref No	Subject	Credits	Teaching Hours		Marks	5 4
				Internal Assessment	Semester Exam	Total
	THEORY					
PMB 301	Food Microbial technology (Core)	4	4	30	70	100
PMB 302	Medical bacteriology (Core)	4	4	30	70	100
PMB 303	DSE	4	4	30	70	100
⊀	A. Microbial Ecology and Plant Microbe		2.8			
	Interactions					
	Or B. Advances in	2.1				
	Biotechnology					
PMB 304	DSC	2	2	15	35	50
/	Industrial Microbiology					
PMB 305	MOOCS on line course	2	2		50	50
	PRACTICALS					
PMB 351	Food Microbial technology &Medical Bacteriology	3	6	x Laid is a X taking to	75	75
PMB 352	Microbial Ecology and Plant	3	6		75	75
	Microbe Interactions; Industrial Microbiology					
	Or					
	Advances in Biotechnology		7. 7.			
PMB 353	Project course work	2	4	12.0	50	50
	Total	24	32	105	495	600

CHAIRPERSON
BOS in Microbiology
Bhavan's Vivekananda College
Sainikpuri

Dr.B.Bhima

Chairman.BoS

Dept. of Microbiology Osmania University, Hyd.

3

Semester IV

Syllabus Ref No	Subject	Credits	Teaching Hours		Marks	
			Trouis .	Internal Assessment	Semester Exam	Tota
	THEORY					
PMB 401	Cell and Molecular Biotechnology (Core)	4	4	30	70	100
PMB 402	Medical virology and Parasitology (Core)	4	4	30	70	100
PMB 403	Microbial biotechnology(Core)	4	4	30	70	100
PMB 404	DSE A.Nanobiotechnology& Bioinformatics Or B.Microbial Proteomics	4	4	30	70	100
	PRACTICALS					
PMB 451	Cell Molecular Biotechnology; Medical virology and parasitology	2	4		50	50
PMB 452	Microbial biotechnology & Nanobiotechnology	2	4		50	50
PMB 453	Project	4	8		100	100
	Total	24	32	120	480	60.
	Grand Total	96	128	480	1920	2400

CHAIRPERSON
BOS In Microbiology
Phayan's Vivekananda College

Dr.B.Bhima

Chairman, BoS
Dept. of Microbiology
Osmania University, Hyd.

Paper I PMB 101 General Microbiology (Core) (CBCS

				01 General Microbiology	(Core) (CE	CS
Month	Week	Unit	Sub. Unit	Detailed Topic	Periods	Total
Aug	1	1	Α	Pioneers of Microbiology		
			Αi	Anton Van Leewenhoek		
			A ii	Lious Pastuer	1	1
			A iii	Robert Koch		
			A iv	Edward Jenner	1	2
			Αv	Winogradsky		
			A vi	Edward Jenner	1	3
			A vii	Winogradsky		
			A viii	Beijerinck	1	4
			A ix	Alexander Flemming	10	
Aug	2		Ax	SelmanWalkmann	1	5
			В	Microscopy		
				Principles,working and application	ns of	
			Вi	Bright field microscope	1	6
			Bii	Flourescent microscope		
			B iii	Phase contrast microscope	1	7
			B iv	Electron microscope	1	8
Aug	3		Вv	Microbial Cell Structure.Prokaryotic cell and	4	12
Aug	3		D V	Eukaryotic cell. Organisation & function of	4	12
			B viii	cellular organells		
			СІ	Bacterial endospore structure	1	13
				Biochemistry and genetics of		
eptembe	4		Cii	sporulation	2	15
Sept	5	2	А	Methods of sterilization and disinfection		
			Αi	Physical methods	2	17
			Aii	Chemical methods	2	19
			A iii	Containment facility.	1	20
			В	Microbiological media	2	22
			Bi	Autotrophic media		
			Bii	defined synthetic mineral med	ia	
			B iii	heterotrophic media	277	
Sept	6		С	The concept of	2	24
,			Ci	prototrophs		
			Cii	auxotrophs		
			Ciii	prototrophic (minimal med)		
				complex media (undefined		
			C iv	media)		
			D	Cultivation of		
				Bacteria		

				Fungi			1
				Algae	2	26	
				Routine and special culture			
		-	Е	methods	2	28	1000
				Agar slant		20	
				Agar stab		-	* * *
							98 1
				Agar plate			
		_		Rolled tube			
				Test tube, Flask,			
Sept	7		F	Aerobic and Anaerobic	1	29	1 2
			G	Isolation of pure cultures			
				Preservation and Maintenance	1	30	
				Routine methods			
				Liquid nitrogen preservation			
				freeze-drying (Lyophilizatio			
				Identification methods and			1
		3	Α	classification of bacteria			
			-76.00	Microscopic identification			-4
			Αi	characteristics			j = 1
			Aii	staining methods.			1
			Α 11	Ecological identification			
Oct	8		A iii	methods	1	31	
				Nutritional (cultural)			1
			A iv	identification characters	1	32	
				biochemical identification			1
			Αv	methods			
Oct	9		Avi	immunological characteristics	1	33	
				Molecular and genetic			1 1 1 1 1 1 1 1 1 1
				characteristics identification			
			Avii	(16s rRNA).	1	34	
			В	Principles of bacterial taxonon		35	1
			C	Numerical taxonomy	1	36	1
				Bergey's manual and its	•	"	1
			D	importance,	2	38	-
				general properties of bacterial		30	1
Oct	10		Е				
OCI	10			groups Microbial nutrition and			1
			F	metabolism	3	41	
				autotrophy			1
				Photoautotrophy	1	42	1
	<u> </u>			bacterial photosynthesis	1	43	1
Oct	11	7		Chemoautotrophy	1	44	1
Oct	17	-		A	1	45	1
	1.5	/		heterotrophic metabolism		45	1
Nov	12	/4	Α	Microbial growth]

			The concept of growth and definition, formation of protoplasm		
			, building of macromolecules from elemental nutrients		
			supramolecules	5	50
			orgnelles of cell and cellular components		
Nov	13		Cell cycle in microbes and generation time	2	52
Nov	13	В	Growth phases of bacteria	3	55
			Lag phase, exponential (logarithmic)		
			phase, stationary (ideo) phase		
			decline and survival of microbial cells		
Nov	14	С	Importance of each growth phase	2	57
Nov	15		Synchronous cultures		2
			Methods of synchronous culturing	1	58
			methods	1	59
		D	Methods of growth measurement	1	60

Moder

M.Sc. (Previous) I Semester Microbiology (CBCS) 2019-2020 PMB 102 Virology Theory

Month	Week	Unit	Detailed topic	No.of Periods	Total
	+		History of vivology (latest		
			History of virology (latest		
August	1	1	Scientific investigations),	2	2
			Viral classification and		
			nomenclature (ICTV system of		
	+-		classification).	2	4
	2		Virus structure and morphology		
			Detection of viruses: physical,		
			biological, immunological,		
			serological and molecular		
	_		methods.	3	7
			Isolation, purification,		
			propagation, characterization,		
			identification and quantification of		
			bacteriophages, plant viruses and		
	2&3		animal viruses	2	9
			Sub-viral particles: Discovery,		
			structure, replication and diseases		
			caused by satellites virus, viroids		
	-		and prions.	2	11
			General idea about cyanophages,		
Sep	4		actinophages and mycophages.	2	13
			Metagenomics for virus		
			characterization.	2	15
			Virus replication Strategies:		
			Principal events involved in		
			replication: Adsorption,		
			penetration, uncoating nucleic acid		
			and protein synthesis, intracellular		
			trafficking, assembly, maturation		
Sep	4&5	2	and release.	2	17
			Viral-host interaction, Host		
			response to viral infection.	2	19
			An Overview of Cellular		
			interactions—clathrin coated pits,		
			lipid rafts, endocytosis and virus		
Sep	6		uncoating mechanisms.	2	21
			Comparision of Lytic cycle and		
			lysogeny cycle - Lambda	2	23
	6&7		T4 Bacteriophage,	2	25

			Morphology, Ultrastructure,		
			Genome organization and		
			Replication strategies of		
			Adenovirus	1	26
			Banana bunchy top virus	1	27
			Reovirus	1	28
Oct	8		TMV	2	30
			Influenza virus	1	31
			HIV	1	32
Oct	9		HBV	1	33
		3	Recombination in phages	3	36
			multiplicity reactivation	1	37
			phenotypic mixing	1	38
			General account of Tumor virus		
Oct	10&11		(RNA and DNA).	2	40
			Viral Interference and Interferons	2	42
			Nature and source of interferons	1	43
			Classification of interferons	1	44
November	12		Induction of interferons.	1	45
			Antiviral agents (chemical and		
			biological) and their mode of		
			actions	3	48
Nov	13	4	Introduction to viral vaccines	1	49
			preparation of vaccines	1	50
			Viruses as cloning vectors	2	52
			Vectors used for cloning and		4
			sequencing: λ phage, M 13, retro		
Nov	14		viruses.	2	54
			CaMV 35S promoter and its		
			application	1	55
			Baculovirus System for insect cell I	1	56
Nov	15		Silver lining: viruses as therapeutic		57
			viruses for gene delivery	1	58
			viruses to destroy other viruses	1	59
			Importance of studying modern		
			virology	1	60
				-	

with 1

SEMESTER-I 2019-2020
Paper III MB 103 Research Methodology & Techniques (Theory) (CBCS)

Month	Week	Unit	Detailed Topic	No of Periods	Total
			Optical methods:		
Aug	1	1	colorimetry and spectrophotometry	2	2
			fluorimetry	1	3
			optical rotation	1	4
	2		Circular dichroism,	1	5
			NMR, ESR spectroscopy	3	8
	3		X-ray diffraction	1	9
			types of mass spectrometry.	2	11
Aug/Sep	3&4		Electrophoretic techniques and application	3	14
			counter current distribution	1	15
		2	Separation methods:		
			Chromatographic techniques - HPLC,		
Septembe 4&5		FPLC	2	17	
			paper, thin layer	1	18
			ion exchange, gel filtration and affinity chi	2	20
Sep 6		Diffusion, dialysis	1	21	
		cell disruption methods	1	22	
		centrifugation techniques	2	24	
			cell free extracts and their use in		
Sep	7		metabolic studies.	1	25
			Radio isotopes		
			radioactivity – scintillation counters,		
			autoradiography	2	27
			Safety precautions		
		_	stable isotopes and their use	1	28
			General method of study of intermediary		
Oct	8		metabolism in microbes	1	29
			Uses of mutants in study of metabolism	1	30
		3	Biometry		
			Population, samples and sampling		
			procedures	1	31
			variables, variations and frequency		
			distributions	1	32
			measures of central tendency and		
Oct	9		dispersion	2	34
			element of probability		

Of dhe

			gausian or normal distribution, binomial		
			distribution, poisson distribution, 't'		72.
			distribution, 'F' distribution and Chi-		
			square distribution	2	36
Oct	10		correlation and linear regression.	2	38
			Normal curve test, 't' test, 'F' test	2	40
Oct	11		ANOVA, analysis of covariance	2	42
			Chi-square test, and confidence intervals.	2	44
Nov	12		Experimental designs using statistical tools	1	45
		4	Computers		
			Introduction to Windows	2	47
			Word Processing	1	48
Nov	13		Electronic Spread Sheet	1	49
			Data collection, Data representation, Data		
			analysis	3	52
Nov	14		Manuscript preparation	2	54
			Research ethics	1	55
Nov	15		QA, QC	2	57
			GLP, GMP	2	59
			Patents & IPR	1	60

() Ihm

· 1 ()

BIOCHEMISTRY THEORY

SEMESTER-I

Paper IV PMB 104 Biochemistry (Theory) CBCS restructered 2019-2020

	Pape	riv P	MB 104 Biochemistry (Theory) CBC		rea 2019-2020
Month	Week	Unit	Detailed Topic	No of Periods	Total
ondi	HOOK	Oille	Detailed Topic	renous	Total
August	4		all 8 its higherical relevance		•
August	1	1	pH & its biological relavence. Determination of pH	2	2
			preparation of buffers	2	4
				-	4
			Types of Buffers		
			Concept of entropy, free-energy, free		
August	2		energy changes	2	6
			High energy compounds	1	7
			Equilibrium constraints	1	8
August	3		Redox potentials	1	9
			Biological redox systems.	1	10
			Biological oxidation	- 	10
			Biological redox carriers.	1	11
			Biological membranes	1	12
September	4		Electron transport	2	14
			Oxidative phosphorylation & mechanism.	2	16
September	5		Lipid classification	2	18
			Bacterial lipids		
			Prostaglandins: Structure & function.	1	19
			Major steroids of biological importance.	1	20
Sep	6	2	Carbohydrates: Classification	2	22
ОСР			basic chemical structure of	-	
			monosaccharides		
			aldoses & ketoses ,cyclic structure of		
			monosaccharides.		
			steroisomerism, anomers and epimers	2	24
			Sugar derivatives, deoxy sugars,		
			amino sugars, and sugar acids	10.0	
			Respiration (Aerobic and anaerobic)		
			and fermentation. Glycolysis (EMP,		
			HMP and ED) pathways. TCA Cycle		
Sen	7		and its integration	2	26
Sep	,		Nucleic acids:		20
			*structure & properties of purines &		
			pyramidins.	2	28
			*nucleosides& nucleotides.	 - 	
			Metabolism of purines		
			*biosynthesis & degradation of		
Oct	8		Pyramidins	2	30
			biosynthesis & degradation of Purines.		
		3	Proteins &Amino acids		

			*properties of amino acids		
Oct	9		Structure, conformation & properties of proteins	2	34
			Metabolism of amino acids		
Oct	9&10		Biosynthesis & degradation of amino acids -an overview	4	38
			Enzymes nomenclature, classification	2	40
Oct	11		Methods for determination of enzyme activity	2	42
			Isolation and purification of enzymes		
			Enzyme kinetics: Effect of pH, substrate concentration, temperature		
November	11		and inhibitors.	4	44
			Mechanism of enzyme action – Action of Hydrolases, Oxidases and		
November	12	4	reductases	4	48
	13		Coenzyme catalysis(pyridoxal phosphate and TPP).	2	52
			Isoenzymes.	2	54
			Competitive and non-competitive inhibition		
	14		Methods for increased microbial enzymes production and activity.	2	56
			Control of enzymes - Regulation of enzyme activity: allosteric enzymes and feed back mechanisms		58 0
			Metabolic compartmentalization in relation to enzyme,		38 (1)
November	15		Enzymes and secondary metabolites	2	60 60

Waller .

GENERAL MICROBIOLOGY PRACTICALS

PMB 151

SEMESTER I (2019-2020)

Month	Week	Exp No.	Experiments	Classes	Total
August	1	1	Handling of Microscopes	4	4
August	2	2	Caliberation and Measurement of Objects	4	8
August	3	3	Staining techniques: Simple/Differential/Special	4	12
Sep	4	4	Sterilization procedures and methods	4	16
	5	5	Preparation of microbiological media	4	20
sep	6	6	Isolation and Cultivation of Pure Cultures	4	24
sep	7	7	Identification methods of bacteria	4	28
oct	8	8	Isolation and Culturing of Fungi and algae	4	32
Oct.	9	9	Culturing methods of microbes	4	36
Oct.	10	10	Anaerobic Culturing methods of microbes	4	40
oct	11&12	11	Microbial growth experiments	8	48
Nov	13	12	Study of bacterial growth curve	4	52
Nov	14&15	13	Factors effecting microbial growth	8	60

Virology Practicals PMB 151

2019-2020

Month	Week	Expt No.	Experiments	Classes	Total
August	1	1	Isolation of phage from soil samples using lab bacterial cultures Staphylococcus and Bacillus	8	8
August	2	2	Isolation of Phage from sewage using Psuedonmonas and E.coli as host.	8	16
August	3	3	Cultivation and preservation of phages	8	24
September	4	4	Quantitation of phages	8	32
September	5	5	Growth phases of phage and Burst size	8	40
September	6	6	Phage induction	8	48
September	7	7	Cultivation of animal viruses in egg,allantoic,amniotic,CAM	4	52
October	8	8	Demonstration of cytopathological changes. Of animal viruses	4	56
October/ Novembe	9	9	Symptomatic observations of plant viral infections.	4	60

(due

I Semester Paper II MB152 Research Methodology and techniques (Practicals) CBCS PMB 152 2019-2020

				No. of	
Month	Week	Expt. No	Experiment	Periods	Total
Aug	1	1	Creating documents using word processor	8	8
Aug	2	2	Usage of spread sheet to biological applicatio	8	16
Aug	3	3	Biological data analysis using software	8	24
			Absorption maxima of proteins, NA,		
			Aromatic aa and riboflavin(Determination of		
			molar extinction coefficient, calculations		
Sep	4&5	4&5	based on Beer Lambert's law)	8	32
			Estimation of inorganic and organic		
Sep	6&7	6&7	phosphate by Fiske -Subbarow method	8	40
			Estimation of protein concentration by UV-		
			Vis spectrophotometry and Folin Lowry		
Sep	8	8	method.	4	44
Sep	9	9	Differential centrifugation	4	48
Oct	10	.10	Paper chromatography of amino acids	4	52
Oct	11	11	Dialysis for desalting of proteins	4	56
Nov	12	12	Demonstration of Gel filtration technique	2	58
			Demonstration of electrophoresis of proteins		
Nov	13	13	and DNA	2	60

Or due

BIOCHEMISTRY PRACTICALS

SEMESTER I

2019-2020

Paper II PMB 153 Biochemistry (Practicals) (CBCS)

		- uper II		No. of	
Month	Week	Expt. No	Experiment	Periods	Total
August	1	1	Safety and good lab practices	4	4
			Preparation of buffers and		
	2	2	adjustment of pH	4	8
			Qualitative and quantitative		
			tests for carbohydrates and		
	3	3	analysis of unknowns	4	12
			Qualitative and quantitative		
			tests for amino acids and		
Sep	4	4	analysis of unknowns	4	16
			Quantitative estimation of		
			inorganic and organic		
	5	5	phosphate	4	20
	-		phosphate	-	20
			Tests for lipids (qualitative		
	6	6	and quantitative)	4	24
			Quantitative estimation of		
	7	7	glucose and fructose	4	28
Oct	8	8	Determination of Saponification of Fat.	4	32
001	Ů	0		-	52
	9	9	Partial purification of Enzymes:	4	36
			*beta - amylase		
	10	10	*urease	4	40
	11	11	*catalase	4	44
			Effect of substrate		
			concentration, pH ,time &		
Nov	12	12	temperature on enzyme activity.	4	48
	13	13	Calculation of km for partially purified enzyme.	4	52
	14	14	Inhibition of enzyme activity.	4	56
	14	14	minibilion of enzyme activity.	4	50
	15	15	Record correction & certification	4	60
					7000

and du

MOLECULAR BIOLOGY & MICROBIAL GENETICS THEORY Paper -I PMB 201 2019-2020

	2020					
Month	Week	Unit	Sub.Unit	Detailed Topic	No.of Periods	Total
			7 7	Detailed Structure of		
Dec	1		ΑI	DNA,Z-DNA,A & B DNA	2	2
				Denaturation & Melting		
		14	A ii	Curves.	2	4
			71 11	Cui ves.		<u> </u>
				Genomic Organization in		
Jan	2		A iii	Prokaryotes & Eukaryotes.	2	6
				P		
				Enzymes invovled in		
			Aiv	Replication.:	2	8
		- 1	W T - 5	Modes of DNA		
		1.7		Replication: Detailed		
				mechanism of	2	
Jan	3		Av	Semiconservative	2	10
				Plasmids:		
				Classification, Properties		
		- 1		and replication.	2	12
				1		
			although the			
			7117 . L	Eukaryotic telomeres & its		
			F	Replication.		
_ =				20 1 1 h		
				Prokaryotic &Eukaryotic		
Jan	4	II		Transcription.	4	16
_				RNA Stucture and		
Jan	5		A	processing	4	20
			Αi	m-RNA		
			Aii	r-RNA		
			A iii	t- RNA .		
			В	Ribozyme	2	22
			В		-	
		= = =	-	The Genetic Code &		
			BI	Wobble Hypothesis.		
			The Court			
			18/18/20/1 28	Post Translation		
Feb	6		B ii	Modification	2	24
			1240			
			coast on the	Translation in Prokaryotes	17.	
			B iii	& Eukaryotes.	2	26
			DIII	& Eukaryotes.		20
				Gene regulation &		
			B iv	expression		

(dlu

Г				T		
				r		
Eab	7			Lac operon, arabinose and	2	20
Feb	7	-	С	tryptophan Operon	2	28
				Gene regulation in		-
			D	eukaryotic systems	2	30
			Б	Cukaryotic systems		30
1						\
		1				1
			(1		} }
			Е	repetetive DNA		
Feb	8		ΕI	Gene rearrangements	2	32
				Promoters		
			E ii	Enhancer elements		
Feb	9	III	A	Mutagenesis:	4	36
			Αi	Types of Mutagens		
				Molecular Basis of		
			A ii	Mutations.		
			A iii	Analysis of Mutations		
	3.2			Site directed Mutagenesis		
March	10		A iv	&	4	40
				Reverse Genetics.		
				Detailed mutagenesis and		
				repair mechanism of UV		
				Ethidium bromide and	2	42
				Nitrous oxide	2	42
,,,	11			DNA damage & Repair	2	44
March	11		A v	Mechanisms	2	44
				Isolation and application	2	46
			В	of Mutants	2	40
) Maria	10			Transposable elements-defination	2	48
March	12	 	С			40
			Dii	Types of bacterial transposons		
			ווע	Applications of		
			E	Transposons	2	50
		-	E	Transposons		30
				Bacterial Recombinations-		
				Discovery ,gene transfer		
				molecular mechanism		
				,detection ,efficacy		
March	13	IV	ΑI	calculation and application	2	52
171GICII	13	1 7	111	Bacterial Transformation-		32
				Competency and		
			A iii	ressistance		
March	14		B	Bacterial Conjugation:	4	56
171GICII	17		BI	Sex Factors in bacteria		30
			DI	John Lactors III Gacteria		

		B ii	F & Hfr transfer		
		B iv	Linkage mapping.		
March	15	C	Bacterial Transduction:	2	58
		CI	Transduction Phenomena		
		C ii	Methods of Transduction		
		C iii	Cotransduction		
			Generalized, Specialed&		
April		C iv	Abortive Transduction.	2	60
		C v	Sex ductions.	nu managa ang managa a	

(dher

Semester-II Molecular Biology and Microbial Genetics - 2019-2020 - PRACTICALS PMB 251

Month	Week	Expt.N o	Experiment	No of periods	Total
December	1&2	1	Extraction of DNA of Genomic	8	8
January	3	2	Estimation of DNA.	4	12
January	4	3	Estimation of RNA.	4	16
January	5	5	Determination of Molecular Weight of DNA, resolved on agarose gel electrophoresis.	4	20
February	6	6	Determination of Molecular Weight of Protein by PAGE.	4	24,
February	7&8	7	Induction of Mutations by Physical/ Chemical Mutagens ,Screening & Isolation of	8	32
February	9&10	8	Replica Plate Technique.	8	40
March	11&12	9	Transformation in Bacteria.	8	48
March	13	10	Conjugation in Bacteria.	4	52
April	14&15	11	Protoplast Preparation & Regeneration.	8	60

	ENV	VIRO	NMENTAL AND AGRICULTURAL MICROF		CORY
Manual	XX7 1	TT. •4	SEMESTER II - 2019-2020 - Paper-2 Code: P		7F 4 1
Month		_	Detailed Topic	No. of Periods	Total
Dec	1	1	Microorganisms in air and their importance	2 2	2
			Microorganisms and water Pollution	2	4
Jan	2		Water-borne pathogenic microorganisms and their transmission	2	
Jan		-		2	7
			Sanitary quality of water.	1	/
-	3		Water pollution due to degradation of organic matter	2	9
	3	-		2	10
		_	Sewage treatment - Overview		
			Aerobic sewage treatment	1	11
	1	_	Oxidation ponds, trickling filters	1	12
	4		Activated sludge treatment	1	13
	-	_	Anaerobic sewage treatment – Septic tank	2	15
	5	2	Strategies for Bioremediation technologies	2	17
			Bioaugmentation	1	18
			Methods of enumeration and activity of microbes		
Feb	6		in environment	3	21
			Microbial biodegradation of organic pollutants.	3	24
			A brief account of biodegradable plastics and		
	7		superbug	2	26
			Microorganisms and their roles in fundamental		England .
	7&8		biogeochemical cycles.	4	30
			Degradation of carbonaceous materials in soil -		
		3	Introduction	1	31
	9		Cellulose	2	33
			Hemicellulose	1	34
			Lignin	2	36
Mar	10		Pectin	1	37
			Factors governing the decomposition and		
			biochemistry of decomposition	1	38
			Soil humus formation	2	40
			Nitrification –Microbes involved, factors		
			influencing nitrification, nitrifying bacteria and		
	11		biochemical mechanism.	2	42
			Denitrification – microbes involved, factors		
			influencing and the mechanism of denitrification	2	44
	12		Nitrate and Phosphate pollution	1	45
		4	Nitrogen fixation – Overview	1	46
			Asymbiotic nitrogen fixation	1	47
	13		Symbiotic nitrogen fixation	2	49
			Microbes involved in Nitrogen fixation	1	50
			Biochemistry of nitrogen fixation	1	51
			Measurement of Nitrogen fixation	1	52
	13&14		Genetics of Nitrogen fixation	1	53
	15611		Ecological and economic importance of nitrogen	-	
			fixation.	1	54
			ALLEWYS VALUE	•	- '

			Biofertilizers – bacterial fertilizers		
		4	Production of rhizobial inoculants	1	55
			Production of blue-green algae	1	56
April	15		Quality control tests	1	57
			Microbes and plant interactions		
			Rhizosphere	1	58
			Phyllosphere	1	59
			Mycorrhizae.	1	60

which I

ENVIRONMENTAL AND AGRICULTURAL MICROBIOLOGY Practicals

Sem II -2019-2020, Paper-II, Code: PMB: 252

				19-2020, Paper-II, Code : PMB: 252	No. of Periods	Total
EXP NO	Month	Week	Unit	Experiments		
				Isolation and observation of air		
1	Dec	1		microflora	4	4
				Enumeration of soil microorganisms		
				(bacteria, actinomycetes, fungi) by		
2	Jan	2		standard plate count	4	8
				Estimation of soil microbial activity		
3		3		by CO ₂ evolution	4	12
4		4		Estimation of BOD	4	16
				Testing for microbial sanitary	6.	
5		5		quality of water (coliform test)	4	20
6		6		Bioremediation plastics	4	24
				Bioremediation of organic		
				pollutants and their effect on soil		
7				microbial activity		
				Isolation of cellulose decomposing		
				microbes and estimation of cellulose		
8	Feb	7		activity	4	28
				Estimation of ammonifiers,		
				nitrifiers and denitrifiers in soil by		
9		8	E	MPN Method	4	32
				Isolation and culturing of		
				Rhizobium sp from root nodules		
				and Azospirillum from grasses		
10		9		(Cyanodon)	4	36
				Biological enrichment isolation of		
				Rhizobium from soil by Leonard Jar		
11		10		experiment	4	40
				Nodulation testing by tube/jar		
12	Mar	11		method	4	44
				Observation and assessment of soil		
13		12		algae/algal biofertilizers	4	48
4				Estimation of N ₂ fixation (Micro		
14				Kjeldahl method/GC method)		
				Isolation and observation for		
15		13		phyllosphere microflora	4	52
				Isolation and observation for		
16		14		rhizosphere microflora	4	56
17	April	15		Observation for Mycorrhizae	4	60

Orde

M.Sc.(PREVIOUS) SEMESTER MICROBIOLOGY (CBCS) PAPER IV PMB 204 PHARMACEUTICAL MICRIOBIOLOGY (4 HPW-4 CREDITS) ACADEMIC YEAR 2019-2020 Month Week | Unit No Sub Topic Total No. of Unit Periods DEC 1 1 Microorganisms affecting A pharmaceutical industry The atmosphere, water, skin & respiratory 1 1 flora of personnel, raw-materials, packing, 1 equipments, building, utensils etc. Types of microorganisms occurring in B 1 3 pharmaceutical products. JAN C Microbiological spoilage 2 5 prevention of pharmaceutical products. Preservation of pharmaceutical D products antimicrobial agents 8 1 JAN used as preservatives 3 1 9 evaluation of the microbial stability of 11 formulation The sterilization in pharmaceutical 13 industry JAN \mathbf{E} Good manufacturing practices 1 14 in pharmaceutical industry 15 **JAN** History of chemotherapy 2 5 2 17 A 2 Inoculum media 2 18 - plants and arsenicals as therapeutics, 2 19 1 Paul Ehrlich and his contributions, 2 21 selective toxicity target sites of drug action in microbes. Development of synthetic drugs -B 22 FEB Sulphanamides, antitubercular 24 6 compounds, nitrofurons nalidixic acid, metronidazole group of drugs. \mathbf{C} Antibiotics - The origin, development 2 26 definition of antibiotics as drugs **FEB** types of antibiotics and their Non-medical uses of antibiotics. Cosmetics microbiology **FEB** 2 28 8 D testing methods and preservation E **Antimicrobial preservation** 29 1 efficacy and microbial content testing 1 30 FEB Principles of chemotherapy 32

() I de

			1	Clinical and lab diagnosis, sensitivity	2	34
MAR	10			choice of drug, dosage, route of	2	36
				administration,		al alia
				combined/mixed multi drug therapy,	2	38
				control of antibiotic/drug usage.		
MAR	11		В	Mode of action of important drugs	2	40
				Cell wall inhibitors (Betalactam – eg. Penicillin),	1	41
				membrane inhibitors (polymyxins),	1	42
				macromolecular synthesis inhibitors		
MAD	12		-	(streptomycin),		4.5
MAR	12	<u> </u>	C	antifungal antibiotics (nystatin)	3	45
		4	A	The drug resistance	3	48
MAR	13			The phenomenon, clinical basis of drug		
				resistance, biochemistry of drug		
			1	resistance, genetics of drug resistance in		
				bacteria.		
			В	Microbiological assays:	3	51
				Assays for growth promoting substances,		
				nutritional mutants and their importance		
				vitamin assay, amino acid assay		
MAR	14	-	С	Assay for growth inhibiting substances	3	54
				Assay for non-medicinal antimicrobials	2	56
				(Phenol coefficient/RWC). Drug		
				sensitivity testing methods and their		
APR	15			Assay for antibiotics – Determination of	1	57
F11 12				MIC, the liquid tube assay,		
				solid agar tube assay, agar plate assay	1	58
				(disc diffusion, agar well and cylinders	i i	3 3
				cup method).	5	
			D	Introduction to pharmacokinetics and	2	60
		1	1	pharmacogenomics	,	

-16 - 1)

			RACTICALS PAPER III PMB 252(8HRS PER WE ND PHARMACEUTICAL MICROBIOLOGY (CBCS) ACADEM		
EXP NO	Month	Week	Experiments	No. of Periods	Total
1	DEC	1	Agglutination reactions-Widal	8	8
2			VDRL,		
3	DEC	2	HA, Blood typing	8	16
4			tube method Precipitation test: Ring interphas	e.	
			single radial diffusion.	,	
5	JAN	3	Ouchterlony double diffusion.	8	24
6	JAN	4	Immunoelectrophoresis	8	32
	0121	<u> </u>	Neutralization test – Plaque neutralization,		
7			Haeme adsorption test.		
8	JAN	5	WBC and RBC count and differential blood p	8	40
9	JAN	6	Separation of serum proteins.	8	48
10			Blot transfer and detection of protein on blot b	y staining.	
П			ELISA	, ,	
12			Purification of IgG from serum		
			Lymphocyte culture, viable staining and		
13	FEB	7	heamocytometer count.	8	56
14			Indirect agglutination (Pregnancy hCG Ag)		
15	FEB	8	Sterility testing methods for pharmaceutical ar	8	64
16			Tests for disinfectants (Phenol coefficient/RW	(C)	
17	FEB	9	Determination of antibacterial spectrum of dru	8	72
18			Chemical assays for antimicrobial drugs		
19	MAR	10	Testing for antibiotic	8	80
20			drug sensitivity/resistance	1,14 5,25, 1	
21	MAR	11	Determination of MIC valued for antimicrobia	8	88
22	MAR	12,13	Microbiological assays for antibiotics	16	104
23			Liquid tube assay, agar tuber, agar plate assay.		
24	APR	14,15	Efficacy testing of preservatives like parabens	16	120

IMMUNOLOGY PMB-203 SEMESTER II - 2019-2020

Month	Week	Unit	Detailed Topic	No. of Periods	Total
			History of immunology. Hematopoiesis, Cell lineage,		
			components of immune system, cells and organs of		
Dec	1	1	immune system	4	4
an	2		Antigens –Nature, properties and types. Haptens	2	6
	-		Antibody -Structure, functions and classification.		
	2		Isotypes, allotypes and idiotypes	2	8
			Immunoglobulin genes. Generation of antibody		
			diversity. Clonal nature of the immune response -		
	3		clonal selection theory.	3	11
			Generation of T cell receptor diversity by genomic		
	3&4		rearrangement	2	13
	4		Structure of B and T cell receptors	2	15
	4	2	Overview of Innate and adaptive immunity	1	16
			Toll-like receptors, cell-mediated and humoral immune		
	5		responses,	2	18
	77		Major Histocompatibility Complex (MHC). Human		
			leucocyte antigen (HLA) restriction Processing and		
			presentation of antigen by MHC. Transplantation		
an/Fel	5&6		immunity,	4	22
	6		Immunosuppression and its mechanism of action	2	24
			Immune response during bacterial (tuberculosis),		
			parasitic (malaria) and viral (HIV) infections, Immune		
	7		evasion by bacteria and viruses.	2	26
	7		Congenital and acquired immunodeficiencies	2	28
	8		Immunological tolerance-central and peripheral	2	30
			Auto immunity and Hypersensitivity - immediate and		
	8	3	delayed type hypersensitivity reactions.	2	32
	9		Classical and alternate Complement pathways	2	34
			Antigen and antibody reactions-Agglutination,		
			Precipitation, neutralization, and function. Labeled	- 1	
			antigen-antibody reactions- ELISA, RIA, immune	- 1	
			blotting, CFT, immunoflourescence. Flow cytometry		
			(Fluorescence activated cell sorter), ChIP, Surface	1	
eb/Ma	9,10&11		Plasma Resonance and its applications in Immunology	9	43
	11&12		Development Of immuno diagnostic kits.	2	45
	12	4	Types of conventional vaccines and principles of Immu	2	47
			Modern vaccines; peptide, DNA, recombinant / vector,		
			and anti-idiotypic vaccines Schedules of common		
			vaccination, Benefits and adverse consequences of		
	12&13		vaccination	4	51
			Production of polyclonal antibodies; Animals models for		
	13&14		production of antibodies	3	54

Dr. M.

		Hybridoma techniques and monoclonal antibody production. Applications of monoclonals in biomedical research, clinical diagnosis and treatment. Chimeric		
	14&15	Antibodies.	3	57
		Tumor immunology. Immuno diagnosis and immune		
April	15	therapy of cancer	3	60

(j) dhe

	F	PMB :		FOOD MICROBIAL TECHNOL	OGY	
			-	STER III Theory 2019-2020	No. of	
Month	Mook	115:4	Sub.U		No. of	T-4-1
Month	vveek 1			Introduction to Fermented foods	Periods	Total
June	1	1	A		1	1
			ΑI	Microbial Product of Milk	1	2
			Aii	Microbioloy of Cheese	1	3
I	_		A iii	Microbiology of Butter	1	4
June	2		A iv	Microbiology of Yogurt	1	5
			Av	Microbiology of Bread.	1	6
			A vi	Microbiology Saurkraut	1	7
I. de	_			Microbiology of Idly.	1	8
July	3		В	Microbial Spoilage of Foods.	1	9
			BI	Factors Influencing the Spoilage.	2	11
			Bii	Food safety issues	1	12
			С	Food Preservation Methods.	3	15
July	4	_	D	Health aspects of fermented foods	1	16
		2	Α	Diary Microbiology.	1	17
			Ai	Types of Microbes In Milk	2	19
July	5		Aii	Significance of Microbes in Milk	1	20
			Aiii	Microbial examination of milk	3	23
Aug	6/7		Aiv	Control of Microbial Flora of Milk.	2	25
			В	Microbes & Animal Interaction.	1	26
			Bi	Rumen Microbiology.	3	29
	7 7 8		С	Production of silage	2	31
			Ci	Importance of silage	1	32
Aug	8	3	Α	Probiotics, prebiotics, synbiotics	1	33
			Ai	Probiotics properties	3	36
Aug	9		Aii	Beneficial effects of probiotics	2	38
			Aiii	Screening methods of probiotics	2	40
Sep	10		Aiv	Genetically modified probiotics	1	41
			В	Edible mushrooms	1	42
			Bi	Therapeutic value of mushrooms	2	44
Sep	11		Bii	Cultivation of mushrooms	4	48
Oct	12	4	A	Bacterial examination of fresh foods	1	49
			Ai	Bacterial examination of canned food	1	50
			В	Food borne infections-Intro	1	51
Oct	13/14		Bi	Food intoxication	1	53
300	10/14		Biii	Food poisoining	1	54
			Biv	Risks and hazards	1	55
			C	Mycotoxins	1	56
Nov	15		Ci	Effect on human health	1	57
Nov	15			Detoxification methods	1	58
			D		2	60
			E	Mechanism of toxicity		00

A du

Month	Mask	CNa	PMB 351	No. of	Tatal
Wonth	Week	S.No	Experiment	No.of periods.	Total
JUNE	1/2	1	Microbiological examination of fresh & Canned foods& Mushrooms.	8	8
JULY	3	2	Microbial examination of spoilage foods and fruits	4	12
JULY	4	3	Microbiological examination of milk & milk products.	4	16
JULY	5	4	Microbiological quality testing of milk (MBRT test).	4	20
AUG	6/7	5	Isolation & cultivation of anaerobes from rumen & termites.	8	28
AUG	8	6	Isolation of probiotics-LAB	4	32
AUG	9	7	Isolation of probiotic-Yeast	4	36
SEPT	10/11	8	Production of mushrooms	8	44
ОСТ	12	9	Screening of probiotic organisms	4	48
ОСТ	13	10	Production of probiotic biomass	4	52
NOV	14/15	11	Isolation & analysis of mycotoxins.	8	60

when (1)

PMB 302 MEDICAL BACTERIOLOGY THEORY

SEMESTER III (2019-2020) Month Week Unit Sub.Unit | Detailed Topic Periods Total Principles of Medical Microbiology: June 1 1 Classification of Medically important Microbes. Α 4 4 Normal flora of Human Body-Origin of Normal Flora, Role of the Resident Flora, Effect of Antimicrobial agents on Normal Flora, 2 June 1 ΒI Characteristics of Normal Flora. 4 8 Distribution & Occurrence of Normal Flora-Skin. Conjunctiva, Nose, Nasopharvnx, Sinuses, July 3 Bii Mouth, Upper Respiratory Tract, Urogenital Tract. 4 12 Bacteria in Blood & Tissues, Factors Influencing 4 B iii July Normal Flora. 4 16 July 5 2 A Properties of Pathogenic Microbes . 2 18 В Factors That Influence Pathogenicity CI Types of Infections 2 20 Cii Source of Infection C iii Different modes / Means of Infection. Diagnostic Microbiology- Types of specimen, specimen collection, Transportation of specimen, Processing, Laboratory investigation, Specific Laboratory test, Nonspecific Laboratory test, Diagnosis & Report. July 6 D 4 24 7 Ε Use of animals in Diagnostic Microbiology. 2 26 August Systemic bacteriology: Detailed study of Morphology, Cultural Characteristics, Antigenic structure, Pathogenesis, Diagnostic lab tests, Epidemology, Prevention & Treatment of the 28 3 following Bacterial Pathogens. 2 Α Bacterial Air Borne Infection: В August 8 2 30 ВΙ β- Hemolytic Streptococci 1 31 Bii Pneumococci 1 32 9 B iii Corynbacterium diptheriae Aug 35 Mycobacterium tuberculosis 3 B iv 1 36 Mycobacterium leprae 10 Βv Aug 1 37 Neisseria meningitidis. B vi 2 39 Hemophilus influenzae. B vii 11 Aug Sexually transmitted diseases caused by 2 41 bacteria;

Ordhe

Sep	12		CI	Treponema pallidum	2	43
			Cii	Neisseria gonorrhoea	2	45
		4	A	Systemic bacteriology: Detailed study of Morphology, Cultural Characteristics, Antigenic structure, Pathogenesis, Diagnostic lab tests, Epidemology, Prevention & Treatment of the following Bacterial Pathogens.		
SEP	SEP 13	В	Water Borne Infections:	1	46	
			ВІ	E.coli	1	47
(9)			Вii	Salmonella typhi	2	49
OCT	14		B iii	Shigella dysentariae	1	50
			B iv	Vibrio cholera	2	52
			С	Wound Infections	1	53
Nov	15/		CI	Staphylococcus aureus	2	55
			Cii	Clostridium tetani	2	57
			C iii	Clostridium welchii	2	59
			C iv	Pseudomonas	1	60

- H. J.

Medical Bacteriology - Practicals SEMESTER III (2019-2020) PMB 352

			FIND 302	No. of	Total
Month	Week	S.No.	Experiments	classes	periods
June	1	1	Preparation of different types of culture media/observation	4	4
			Types of culture media.		
			*Blood Agar, Chocolate agar		
			*Mannitol salt agar.		
			*Baired parker media.		
June	2		*MacConkey agar.	4	8
			*Lowenjein.		
			*Jensen media.		
			*Wilson & Blair bismuth sulphite media		
July	3		*Biochemical media.	4	12
July	4	2	Staining technique		
July	5		*Gram staning	4	16
July	6		*A F B staning	8	24
August	7		*Albert staning	4	28
August	8		*Capsular staning	4	32
August	9&10	3	pathogenic bacteria by microscopic, macroscopic,biochemical, enzymatic & serological tests (coagulase,catalase,	8	40
Sept ,	11,12	4	Bacteriological examination of different specimens from patients for diagnosis.	8	48
September	13		*Urine	4	52
oct	14		*Pus/Throat Swab	4	56
Nov	15		PCR demonstration -Diagnosis	4	60

M.Sc.(FINAL) SEMESTER MICROBIOLOGY (CBCS)

PAPER II PMB (A)303 MICROBIAL BIOTECHNOLOGY (DSE (A) :ELECTIVE -1) (4 HPW-4 CREDITS)

ACA	DEM	IC Y	FΑ	R -2	01	9-	202	20
					. •			

Month	Week	Unit No	Sub Unit	Topic	No. of Periods	Total
JUNE	1	1	A	Introduction to Industrial Microbiology		
			J Fyo	Definition ,Scope and History	1	1
			30.10	Properties of Industrial Microoganisms Industrial Products	1	2
		4 -	В	Screening for microbes of Industrial importance		
		Pero Williams		Primary Screening- Screening for Amylase Organic acid, Antibiotic, Amino acid& Vitamin producing Microorganisms	1	3
				Secondary Screening	1	4
JUNE	2		Facilities	Further evaluation of Primary isolates.	1	5
		C	Detection and assay of Fermentation Products			
		1177127		Physico chemical methods &	1	6
				Biological assay	1	7
			D	Fermentation equipment and its use.		
				Design of Fermentor	1	8
JULY	3			Types of Fermentor	1	9
				Agitation	1	10
				Aeration	1	11
			Land.	Antifoam	1	12
				pH and temperature control.	1	13
JULY	4		E	Strain development: strategies Environmental factors for improvement	1	14
		441		Genetic factors for improvement	1	15
JULY	5	2	A	Inoculum media AND Inoculum preparation	2	17
			В	Raw materials	2	19
			С	Solid state Fermentation Surface Fermentation	2	21
				Fermentation media & Sterilization.	1	22
JULY	6		D	Types of Fermentation Processes:		
				Solid State, Surface and Submerged Fermentations.	2	24
AUGUS	7	17.77		Batch , Fed- batch and Contineous	2	26
AUGUS T	7	1		Fermentations.	2	

(Julia

				Direct, Dual or multiple Fermentation		
				Scale up of fermentations		
AUGUS	8			Product recovery methods.	2	28
	16 081		E	Fermentation type reactions:		
				Alcoholic Type	1	29
				Lactic Acid Type	1	30
AUGUS T	9	3	A	Fermentative production and down stream processing of Citric acid.	2	32
			В	Fermentative production and down stream processing of Vitamin B12.	2	34
AUGUS T	10		C	Fermentative production and down stream processing of Glutamic acid.	2	36
	1		D	Comercial production of Benzyl Penicillin,Semisynthetic penicillins.	2	38
AUGUS	11		E	Comercial production of Tetracylines.	2	40
				Fermentative production of Beer-Medium components, Malt, Malt adjuncts, Hops Water.	1	41
				Preparation of Wort, mashing, Wort boiling, Microorganisms, Inoculum preparation Fermentation, Cold Storage maturationn, Carbonation, Packing& preservation.	1	42
				The second secon		
SEPTE MBER	12		F	Principles of Wine making -Fruit Selection, Picking, Crushing, Sulphite addition, Pressing, Fermentation, Aging & Botling.	3	45
		4	A	Production & applications of Microbial enzymes- Amylases & Proteases, Uses.	3	48
SEPT	13	ž —	В	Steroid Bio- transformations .Substrates, Typical Structure, Microbes, Inoculum Preparation, 11-Hydroxylation, Process & Recovery.	3	51
oct	14		C	Microbial Bio-Pesticides.	3	54
Nov	15		D	Microbial Products from Genetically Modified (cloned) organisms Ex:Insulin.	3	57
			E	Immobilization methods:	3	60
				Advantages and disadvantages		
				Adsorption		
				Covalent linkage		
				Cross linkages		
				Entrapment		

Modern

7

M.Sc.(FINAL) III SEMESTER-MICROBIOLOGY

2019-2020

PMB: 352 APPLIED MICROBIOLOGY (Practicals)

Manth	West.	Experiments	No. of	
Month	Week	ZAPOTITIONIO	Periods	Total
JUNE	1&2	Screening for Amylase producing organisms	8	8
JULY	3&4	Isolation of Antibiotic producing organisms by crowded plate technique	8	16
JULY	5&6	Screening for Organic acid producing organisms	4	20
AUG	7	Isolation & Culturing of Yeasts.	4	24
AUG	8	Seperation of amino acids by chromatography	4	28
AUG	9	Estimation of glucose by DNS method	4	32
AUG/SEPT	10,11&12	Estimation of Ethanol by Dichromate method	12	44
SEPT/OCT	13	Estimation of maltose	4	48
OCT/NOV	14&15	Immobilisation of microbial cells by Entrapment method.	12	60

Or dhe

			PMB 304 DSE-A		
Semes	ter II	ı	2019-2020	4-1-1-1	
	Week		Detailed Topic	No. of Periods	Total
June	1	1	Microbial Ecology:	A STATE OF THE STA	95.08
			Concept of habitat and niche	4	4
			Concept of population and		a servi
			community		
			Development of microbial		
			communities	1-1-1	
June	2		Microbial growth curve	4	8
			representing r and k reproductive	There is a	
			Planktonic growth and Biofilm		+-
			formation	The Page 2	
			Tormation	7. (2.12)	
			Concept of plant probiotics (Seed	The state of the s	
			endophytes and plant endophytes).		1
July	3		Microbial communities of	4	12
,			spermosphere, rhizosphere,		
					-
			Microbial community diversity		
			analysis:		_
			Phylogenetic based approach (16s		
			rRNA, Internal transcribed region),	THE STATE OF THE S	
July	4		Taxon based approach (gene	4	16
			diversity index, Shannon's diversity	The state of the state of	-
			index),		
			Sequence based approach		
			(Pyrosequencing, NGS).	e englise ja	
		2	Plant growth promoting		
			microorganisms (PGPM):	1000000	100
				Samuel Sant	
July	5		Plant growth promoting rhizobacteria	4	20
			Direct and Indirect mechanisms of	kii Tu makina	
			plant growth promotion		
July	6	_	Microbial formulations (neat	4	24
July	ľ		Microbial formulations (peat,		-'
			lignite, talc) and mode of		-
			inoculation in soil conditions.		
			Detection of microbial inoculants by		
			staining, biochemical and		
			molecular methods.	5-35-4	
August	7	_	Di di i la la Galal	4	28
August	 ′		Plant-microbe beneficial	0.00	20
			interactions		-
			Pseudomonas-Plant Interaction and		
			and Bacillus Plant Interactions		

			Trichoderma-Plant Interactions.		
Aug	8	T	Role of biotic and abiotic factors in	4	32
			plant- microbe interactions		
	+	3	Plant Pathology and pests		
Aug	9		Introduction to Phytiatary science	4	36
			and its importance		
	+	\vdash	Plant Disease Triangle		
Aug	10		Diseases caused by fungi:	4	38
	1		Sclerotium rolfsii and		
		-	Macrophomina phaseolina (collar		
			rot disease, charcoal rot),		
			bacteria: Xanthomonas campestris		
			(black rot), actinomycetes:		
			Streptomyces scabies (common		
	1		scab).		
Aug	11	\top	Infections caused by pest:	4	42
			Helicoverpa armigera and		
Sep	12	T	Biological and chemical control	4	46
•			methods for plant diseases and pest		
			management.		1
	+	4	Molecular plant microbe-		-
			interactions		
Sep	13	1	Impact of root-beneficial microbe	4	50
	1	1	interactions on aboveground plant		
			phenotypic plasticity		
Sep	14		Two-component signal transduction	2	52
			system (Gac S and Gac A) in plant		1 727
			growth promoting bacteria		The sa
			Cell signaling and Quorum sensing	in	
			Gram negative bacteria, acylated	2	54
			homoserine lactones (AHLs),		
	+-	+	Gram positive bacteria (peptides),		
			yeast (Farnesols), Fungi (Oxylipins).	2	56
		\top	Intra and inter species		
			communication, Inter-kingdom		
			signaling.	i i	1401
			Host-pathogen interactions.		- Leaville
Sep	15		Basic concept of plant immunity	2	58
			(MAMPs, PAMPs).	F F	- politic
مال	\412		Plant defense mechanisms (induced	0	60
ucyn	JOV		systemic resistance (ISR); systemic	12	00
			acquired resistance (SAR).		

			PMB 353		
			Semester -III	2019-2020	
Month	Week	EXP.NO	Detailed Topic	No. of Periods	Total
June	1	1	Isolation of plant growth promoting bacteria (PGPB) from soil, compost, vermicompost	4	4
June	2	2	Screening PGPB for nitrogen fixation, P-solubilisation, Siderophore production on selective medium	4	8
July	3	3	Isolation of Pseudomonas on Kings B medium and microscopic identification	4	12
July	4	4	Isolation of Actinomycetes on selective medium and microscopic identification	4	16
July	5	5	Isolation of Trichoderma on selective medium and microscopic identification	4	20
July	6	6	Isolation of bacteria with ability to produce plant growth hormone Indole acetic acid (IAA)	4	24
August	7	7	Quantification of IAA by spectrophotometric method	4	28
August	8	8	Quantification of phosphate by spectrophotometric method	4	32
August	9	9	Isolation of antagonistic microbes using dual-culture method	4	36
August	10	10	Pseudomonas and its metabolites for anti-fungal activity	4	40
Sept	11	11	Bacillus and its metabolites for anti- fungal activity	4	44
Oct	12	12	Trichoderma and its metabolites for anti-fungal activity	4	48
Oct	13	13	Isolation of plant pathogenic fungi S. rolfsi, Fusarium spp. etc. on specific media	4	52
Nov	14&15	14	Detection of QS compounds in Bacteria.	8	60

M.Sc. III Semester Microbiology (CBCS) 2019-2020

Microbiological Quality Control and Quality Assurance in Food & Pharma Industry

PMB 305B SEC

35 3				ACADEMIC YEAR 2019-2020		
Month	Week	Unit No	Sub Unit	Topic	No. of Periods	Total
JUN	1& 2	1	1	Concept of Good Manufacturing Practices (GMP), Good Laboratory Practices (GLP) and Standard Operating Practices (SOP)	4	4
JULY	3&4		2	Overview of Quality Control (QC) in fermentation processes: Principles of validation for Food and pharmaceutical industry	4	8
AUG	5&6		3	Tests used for quality assurance (QA) of finished product.	4	12
AUG	7&8			Microbial Standards for Different Foods and Water – BIS standards for common foods and drinking water.	4	16
SEPT	9&10	2	4	Culture and microscopic methods - Standard plate count, Most probable numbers, Direct microscopic counts, Limulus lysate test for Endotoxin detection, gel diffusion, sterility testing for pharmaceutical products.	4	20
SEPT	11		5	Enrichment culture technique, Detection of specific microorganisms on selective media like XLD agar, Mannitol salt agar, EMB agar, McConkey Agar, Saboraud Agar.	2	22
OCT	12&13		6	Microbial quality testing of milk by MBRT, DMC and Plat form tests like COB, 10 min Resazurin assay .	4	26
OCT/N OV	14&15		7&8	Microbial quality testing of water by coliform test, Pathogen detection in water samples.	4	30

Or due

		PMB 40		ULAR BIOTECHNOLOGY THEOR	<u> </u>	
	SEMEST			2019-2020		
Month	Week	Unit	Sub.Unit	Detailed Topic	No.Of Periods	Total
Nov	1	1	а	Cell cycle: Cell division regulation and cancer	4	4
			b	Role of protein Kinases in cell cycle		
Nov	2		d	Programmed cell death	4	8
			е	Geno toxicity assays.		-
Dec	3		f	Signal transduction: G- Protein linked receptors	4	12
			to King o	Concept of second messenger, cAMP	-	
			g	& cGMP.		
Dec	4	-	h	Steroid/peptide hormone regulation	4	16
			i	tissue specific regulation		
			j	Protein folding and the roles of Molecular chaperones.		
Dec	5	2	a	Vectors in Molecular Biology	4	20
Dec			b	Artificial chromosomes	-	20
			c	Enzymes		
			d	Polymerase chain reaction	2	22
Dec	6		e	DNA/Protein sequencing	2	24
Ψį,	11	52	f	rRNA/ Genomic/ c DNA Library construction and screening.	2	26
Dec	7		g	Cloning Techniques: cloning in E-coli	2	28
			h	Cloning in Bacillus subtilis	2	30
Jan	8		i	Cloning in Yeast	2	32
Jan	9		j	promoters, Vectors, cloning strategy, Transformation, Selection, Expression and detection of cloned genes.	4	36
		3	a	Production of recombinant antibodies,	2	38
			b	Protein-protein and protein-DNA interactions		
Jan	10		С	Biochips (DNA chips and Protein chips)	2	40
			d	Pharmacogenomics		
			е	Molecular diagnostics		
			f	DNA markers: rRNA		
Jan	11		g	Molecular hybridization	4	44

Or dhe

12		h i j	analysis Simple sequence repeat markers DNA fingerprinting		
12		j j	DNA fingerprinting	3.75.274.12	
12		j			
12			Constant DNIA! and Cons		
		k	Gene knock out – RNAi and Gene silencing,	4	48
		1	Gene therapy		
		m	Metagenomics.		
13	4	а	Bioinformatics -Databases,	4	52
		b	Primer Design		
14		С	finding and multiple sequence alignment	4	56
		d	Protein structure analysis-Modeling.		
		e	Protein engineering and drugs design		
			Rational of protein engineering, steps involved in protein engineering and	The state of	. 25.
15		f	drug design.	4	60
		14	13 4 a b 14 c d e	m Metagenomics. 13 4 a Bioinformatics -Databases, b Primer Design finding and multiple sequence alignment d Protein structure analysis-Modeling. e Protein engineering and drugs design Rational of protein engineering, steps involved in protein engineering and	m Metagenomics. 13 4 a Bioinformatics -Databases, 4 b Primer Design finding and multiple sequence c alignment 4 d Protein structure analysis-Modeling. e Protein engineering and drugs design Rational of protein engineering, steps involved in protein engineering and

edt,

Semester-IV Cell and Molecular Biotechnology AY 2019-2020. PMB 451

Month	Week	Expt.No.	Experiment	No of periods	Total
November	1,2 & 3	1,2,3	Isolation of DNA ,RNA and protein from bacteria	12	12
December	4	4	Restriction Mapping.	4	16
December	5	5	PCR Technique - Demonstration.	4	20
December	6		Gene cloning in bacteria - Demonstration	4	24
December	7	6	Southern Transfer Demonstration.	4	28
January	8	7	Demonstration of RFLP	4	32
January	9	8	Recombinant confirmation (gel shift assays,blue white seletion)	4	36
January	10	9	Separation of Proteins by Column Chromatography	4	40
January	11	9& 10	Data base searching ,BLAST & MSA	4	44
February	12 & 13	11	Primer design	8	52
March,	14& 15	12& 13	Protein Modeling	8	60

Mahn

MEDICAL VIROLOGY & PARASITOLOGY THEORY SEMESTER IV 2019-2020, PMB-402

				SEMIESTER IV 2019-2020, PMB-402	No.of	
Month	Month Week Unit Sub.Uni Detailed Topic		Detailed Topic	Periods	Total	
NOV	1	1	A	Diagnostic Virology	1	1
				Cultivation of Pathogenic Viruses in lab		
			A1	Animals & Tissue culture,	1	2
			9.1	Identification of pathogenic Viruses &		
NOV	2		A2	establishment of Viral etiology	3	5
1101			AZ	Air Borne Viral Infections (detailed	3	
			В	study)	1	6
			BI	Influenza virus	2	8
DEC	3		Bii	Rhino virus	1	9
DLC			Biii	Rubella virus	1	10
DEC	4		B iv	Adeno virus (type 2)	1	11
DEC			Bv	Mumps virus	2	13
				Measles virus.	2	15
			D VII	Detailed study of Viruses transmitted by		13
DEC	5	2	A	Water	2	17
DEC				Hepatitis (HAV)	2	19
DEC	6		Aii	Polio myelitis	3	22
DEC				Detailed study of Viruses transmitted by		
			В	Zoonosis	2	24
DEC	7		BI	Rabies	4	28
JAN	8			Japanese encephalitis.	2	30
			2	Detailed study of Contact & Sexually		
		3	A	transmitted Viral Diseases:	2	32
JAN	9			Small pox	2	34
01111			A ii	Herpes (Herpes simplex Virus)	3	37
JAN	10/		Bii	Hepatitis Viruses & their Diseases.	4	41
07111	107			Acquired Immunodeficiency Syndrome		
JAN	11		Bii	(AIDS).	4	45
JAN	12	4	A	Detailed study of Parasitic Diseases	1	46
07111	12		Ai	Malaria, Trichomonas	2	48
			A ii	Amoebiasis	1	49
FEB	13		В	Helmentheic infections	1	50
122			Bii	Round worm	1	51
			Bii	Hook worm	1	52
FEB	14		C	Medical Mycology	3	55
MAR	15		Ci	Dermatomycosis	3	58
MAR	10		Cii	Systemic mycosis	2	60

Medical Virology & Parasitology Nanobiotechnology SEMESTER - IV 2019-2020

Practicals

PMB 452

MONTH	Week	Experiment	No.of Periods	Total
		Tissue culture techniques		- 9490
		(demonstration), Microscopic studies of viruses		
NOV	1,2	infected materials (demonstration)		8 8
		Examination of pathogenic fungi, Examination of		
		stool for Hookworm, Round worm, Examination of		-
NOV/DEC	3,4	stool for Entamoeba histolytica		8 16
		Examination of blood smear by Leishman stain for		
		Malarial parasites,Immunodiagnosis - Tridot test for		
DEC	5,6	HIV, Hepstic test for HBV, ELISA.		8 24
		Chemical Synthesis of Nano		
		Biomaterials, Microbiological Synthesis of Nano		
DEC/JAN	7,8	Biomaterials		8 32
		Green synthesis of metal nanoparticles - Copper, Zinc		
JAN	9,10	and Silver using plants extracts		8 40
1-1		Characterization of Nanoparticles by UV		
JAN/Feb	11,12	spectrometry,SEM Analysis of nanoparticles		8 48
1.	15	Antimicrobial effect of Ionic silver and Nanosilver		
FEB/Max	13,14,1	prepared by above methods.	1	2 60

BIOINFORMATICS PMB-403 DSE-B; Paper-III; SEMESTER IV - 2019-2020

Month	Week	Unit	Detailed Topic	Periods	Total
		1	Bioinformatics and genomics		
NOV	1		Introduction to Bioinformatics and Molecular Databases	2	2
NOV	2		Primary Databanks – NCBI, EMBL, DDBJ; Secondary Databases – UNIPROT; Structural Database –PDB	2	4
DEC	3&4		Database similarity search (FastA, BLAST); Alignment: Pairwise and Multiple sequence alignment, Phylogenetics analysis and Tree construction	3	7
	4&5		Genomics and whole genome sequencing	2	9
DEC	5&6		HGP, Genome Annotation and Gene Prediction	2	11
DEC	6&7		Primer Designing	2	13
JAN	7&8		SNPs, WGA (WGS) (Whole genome analysis and whole genome studies)	2	15
		2	Transcriptomics and proteomics		
	9		Transcriptomics and sequencing a transcriptome, microard	3	18
	10		ENCODE	1	19
JAN	10&11		Proteomics and sequencing a proteome	2	21
JAN	11&12		Protein folding <i>in vivo</i> and the roles of Molecular chaperones	2	23
			Protein Sequence Analysis; Approaches for Protein Structure Prediction (folding <i>in silico</i>)-Homology modeling of protein; Energy Minimization Methods;		
FEB	12&13		Active site identification	3	26
FEB	14		Protein engineering	2	28
MAR	15		Structure Based Drug Design and Ligand-based drug Design; Docking studies	2	30

M.Sc. (Final) IV Semester Microbiology (CBCS) Paper IV PMB 404 Nanobiotechnology (Theory)-CBCS (4 HPW-4Credits) 2019-2020

Week	Unit	Topic	No.of periods	Total
				1
1	2		2	3
1,2	3		3	6
2,3	4			
			4	10
			3	13
4	6	Properties of nanomaterials	2	15
	II			
			_	
4,5	1		2	17
_				
5			3	20
	3			1,
		Atomic Fluorescence Microscopy (AFM),STEM		
6.7			5	25
	4	Surface and composition-ECSA.EDAX		
		-		
7.8			5	30
.,.	III			
8	1	Nanomembranes in Sea desalination.	2	32
		DNA based biosensors for heavy metal complexing		
9	2	1	3	35
-	_			
		elements and		
9.10	3		3	38
5,10		Miniaturized devices in nanobiotechnology –Types		
10	4		2	40
	1 1 1,2 2,3 3,4 4 4,5 5 6,7 7,8 8 9	1 2 1,2 3 2,3 4 3,4 5 4 6 II 4,5 1 5 2 3 3 6,7 4 7,8 III 8 1 9 2	1 1 Nanobiotechnology-Introduction 1 2 Development of nanobiotechnology Nanoparticles -Origin and their classification, Nanoscale systems Nano structures-Carbon nanotubes, quantum dots, Semiconductor nano particles, metal based nanostructures, nanowires- polymerbased nanostructures, gold nanostructres. Protein based Nanostructures: Nanomotors-Bacterial E.coli, Mammalian myocin family 4 6 Properties of nanomaterials II Synthesis and Characterization Synthesis of nanostructures – physical, chemical and biological Methods of biological synthesis- Use of plants, bacteria, algae, fungi, actinomycetes for nanoparticle synthesis. 3 Characterization techniques for nanaomaterials Optical- UV-Visible spectroscopy, X-ray diffraction Imaging and Size- Scanning Electron Microscope (SEM), Transmission, Electron Microscopy (TEM), Atomic Fluorescence Microscopy (AFM), STEM 6,7 4 Surface and composition-ECSA, EDAX Vibrational analysis- FTIR Spectroscopic analysis, SERS, Magnetic, electrical and electrochemical III Environmental Nanotechnology Nano fibres and nanobiocides in water purification, Nanomembranes in Sea desalination. DNA based biosensors for heavy metal complexing with DNA, Use of these in water and food sample analysis. Biosensors: different classes –molecular recognition elements and Transducing elements. Miniaturized devices in nanobiotechnology –Types	1 1 Nanobiotechnology-Introduction 1 1 2 Development of nanobiotechnology 2 Nanoparticles -Origin and their classification, 3 Nanoscale systems 3 Nano structures-Carbon nanotubes, quantum dots, Semiconductor nano particles, metal based nanostructures, nanowires- polymerbased nanostructures, gold nanostructres. 4 Protein based Nanostructures: Nanomotors-Bacterial E.coli, Mammalian myocin family 3 4 6 Properties of nanomaterials 2 II Synthesis and Characterization Synthesis of nanostructures – physical, chemical and biological Methods of biological synthesis- Use of plants, bacteria, algae, fungi, actinomycetes for nanoparticle synthesis. 3 3 Characterization techniques for nanoamaterials Optical- UV-Visible spectroscopy, X-ray diffraction Imaging and Size- Scanning Electron Microscope (SEM), Transmission, Electron Microscope (SEM), Transmission, Electron Microscopy (TEM), Atomic Fluorescence Microscopy (AFM), STEM 6,7 5 Surface and composition-ECSA, EDAX Vibrational analysis- FTIR Spectroscopic analysis, SERS, Magnetic, electrical and electrochemical 5 III Environmental Nanotechnology Nano fibres and nanobiocides in water purification, Nanomembranes in Sea desalination. 2 DNA based biosensors for heavy metal complexing with DNA, Use of these in water and food sample analysis. 3 Biosensors: different classes –molecular recognition elements and Transducing elements. 3 Miniaturized devices in nanobiotechnology –Types

Orline

	×,	- 1, 1	Nanobiotechnological applications in Environmental		
	11	5	Bioremediation	2	42
		4	Environmental implication of nanomaterials –		
	7	1	Occurrences, Fate and Characterization of		
JAN	11,12	6	Nanomaterials in the environment	3	45
		IV	Nanotechnology in Pharma and Medicine	and the same	
			Applications of Nanostructures in drug discovery,		
JAN	12	1	drug delivery and its controlled release	3	48
FEB	13	2	Studies on Nanoparticles for antimicrobial properties	1	49
	13	3	Nanostructures in cancer research and therapy	3	52
4 =					74.4
			Nanotechnology for tissue engineering- Use of		- 10.00
FEB	14		synthetic nanocomposites for bone, teeth replacement	2	54
MAR	14,15	4	Diseased tissue destruction using nanoparticles	3	57
MAR	15	5	Cytotoxicity and genotoxicity of Nanoparticles	3	60
					, ==,

MICROBIOLOGY AND HUMAN HEALTH PMB-403 GE-A; PAPER III; SEMESTER IV - 2019-2020

				No. of Period	
Month	Week	Unit	Detailed Topic	s	Total
NOV	1	1	Health and hygiene	2	2
DEC	2		Bacterial, Viral, fungal, Parasitic.	2	4
			Normal flora of human body and its		
	3		significance.	2	6
			Infection: Types of Infections, Sources of		
	4,5		infections, Mode of infections.	4	10
			Concept of Immunity, Immunization,		
	6,7		Vaccines and vaccination schedule.	3	13
			Prevention, control and treatment of infectious		
JAN	8		diseases.	2	15
	9	2	Food and water borne Infections	2	17
Feb	10		Air borne Infections	2	19
	11		Zoonotic Infections	2	21
Mar	12		Contact/sexually transmitted Infections	2	23
	13,14		Nosocomial Infections	4	27
Apr	15		Insectborne Infections	3	30

(du